Abdominal Wall CT Angiography:
A Detailed Account of a Newly Established Preoperative Imaging Technique

Institutional review board approval was obtained for this study, and all patients gave written informed consent. Autologous surgical breast reconstruction with use of abdominal wall donor flaps based on the deep inferior epigastric artery (DIEA) and one or more of its anterior musculocutaneous perforating branches (DIEA perforator flap) is being used with increasing frequency instead of breast reconstruction with use of traditional transverse rectus abdominus musculocutaneous and modified muscle-sparing flaps. Preoperative mapping of the DIEA perforators with abdominal wall computed tomographic (CT) angiography may improve patient care by providing the surgeon with additional information that will lead to optimization of the surgical technique, shorter procedure time, and reduction in the frequency of surgical complications. The branching patterns of the DIEA, the segmental anatomy of the anterior adipocutaneous perforating branches of the DIEA, and the importance of these features in pre- and intraoperative surgical planning necessitate a different approach to abdominal wall CT angiography than that used with other abdominal CT angiographic techniques. In abdominal wall CT angiography, the common femoral artery is used as the bolus trigger, CT scanning is performed in the caudocranial direction, the automatic exposure control feature is disabled, a scaled grid overlay tool is used to present information to the surgeons, and radiation dose is minimized (average dose, 6 mSv). The anatomic accuracy of abdominal wall CT angiography has been investigated in cadaveric and surgical studies, with sensitivity of 96%–100% and specificity of 95%–100%. This detailed description will allow other radiologists and surgeons interested in free DIEP flap surgery to incorporate this useful tool into their practice.

© RSNA, 2008

Supplemental material: http://radiology.rsna.org/cgi/content/full/249/1/32/DC1

1 From the Department of Radiology, the Royal Melbourne Hospital, Grattan Street, Parkville, Melbourne, Victoria 3050, Australia. Received November 26, 2007; revision requested January 15, 2008; revision received March 21; final version accepted April 3. Address correspondence to T.J.P. (e-mail: timothy.john.phillips@gmail.com).

© RSNA, 2008
A utologous surgical breast reconstruction with abdominal wall donor flaps has evolved since its introduction in the late 1970s and early 1980s (1,2). Free flaps based on the deep inferior epigastric artery (DIEA) and one or more of its anterior musculocutaneous perforating branches (hereafter, perforators) are termed DIEA perforator flaps, and they are being used with increasing frequency to replace the traditional transverse rectus abdominus musculocutaneous flaps and the modified muscle-sparing flaps (3–6). The DIEA perforator flap is used to harvest fat and skin (adipocutaneous tissue) without muscle and has resulted in fewer abdominal wall complications—including hernia, bulge, and weakness (3,7–10)—and shorter hospital stays, with a cheaper overall cost of treatment (11,12) when compared with alternative surgical techniques. The superficial inferior epigastric artery can also be used for an adipocutaneous musclesparing flap, and it is the preferred surgical option for an abdominal wall free flap, as it does not require incision of the anterior rectus sheath and thus has minimal donor site morbidity (13,14). However, this vessel is not uniformly present or of sufficient caliber to perform the operation.

The branching pattern of the DIEA and the location of its perforators vary, and each patient’s anatomy dictates the DIEA and perforator(s) on which the flap will be based (15,16). Preoperative Doppler ultrasonography (US) is useful when defining the DIEA branching pattern; however, locating and choosing the perforators was previously completed only after intraoperative abdominal wall dissection. Identification of optimal perforators on which to base the flap is highly desirable. There is evidence that flaps based on fewer perforators have a lower incidence of fat necrosis (7). Harvesting a flap supplied by one perforator requires the identification of a perforator with optimal characteristics (discussed in detail later in this article).

Abdominal wall computed tomographic (CT) angiography is a new technique tailored to assist in locating and characterizing the perforators, with reported sensitivity and specificity of 96%–100% and 95%–100%, respectively, in cadaveric and clinical studies (17–23). In addition, this technique can be used to define the branching pattern of the DIEA (18,23). The intent of this article is to provide those who are interested in abdominal wall CT angiography with a step-by-step manual that describes our approach to this modality. Included are considerations regarding appropriate patient selection, contrast material enhancement, image acquisition and reconstruction parameters, image display and analysis techniques, and the radiology report, which includes the presentation of data to the referring surgeon. An explanation of the surgical and radiologic anatomy of the DIEA and the characteristics that define favorable perforators is also included. These recommendations are based on the authors’ experience in performing and interpreting the results of 65 abdominal wall CT angiographic examinations and on close collaboration between the departments of radiology and plastic surgery at our institution.

**Anatomy**

**DIEA Classification**

Cadaveric and surgical studies have been performed to classify the branching pattern of the DIEA. The branching classification first described by Moon and Taylor has been widely adopted and is shown in Figure 1 (15). In addition to the major branching patterns (types I, II, and III) of the DIEA above the arcuate line, early branches also include a pubic branch, muscular branches, and an umbilical branch (15).

Type I (single trunk) and type II (bifurcation into two trunks) branching patterns occur more commonly than does the type III pattern (division into more than two trunks). The other relevant characteristics are the caliber of the trunk(s) and any intramuscular

**How I Do It: Abdominal Wall CT Angiography**

We have detailed the use of radiologic classification of the segmental anatomy of the anterior musculocutaneous perforating branches (DIEA perforator(s) on which the flap will be based) when compared with alternative surgical techniques. The superficial inferior epigastric artery can also be used for an adipocutaneous musclesparing flap, and it is the preferred surgical option for an abdominal wall free flap, as it does not require incision of the anterior rectus sheath and thus has minimal donor site morbidity. However, this vessel is not uniformly present or of sufficient caliber to perform the operation.

The branching pattern of the DIEA and the location of its perforators vary, and each patient’s anatomy dictates the DIEA and perforator(s) on which the flap will be based. Preoperative Doppler ultrasonography (US) is useful when defining the DIEA branching pattern; however, locating and choosing the perforators was previously completed only after intraoperative abdominal wall dissection. Identification of optimal perforators on which to base the flap is highly desirable. There is evidence that flaps based on fewer perforators have a lower incidence of fat necrosis. Harvesting a flap supplied by one perforator requires the identification of a perforator with optimal characteristics (discussed in detail later in this article).

Abdominal wall computed tomographic (CT) angiography is a new technique tailored to assist in locating and characterizing the perforators, with reported sensitivity and specificity of 96%–100% and 95%–100%, respectively, in cadaveric and clinical studies. In addition, this technique can be used to define the branching pattern of the DIEA. The intent of this article is to provide those who are interested in abdominal wall CT angiography with a step-by-step manual that describes our approach to this modality. Included are considerations regarding appropriate patient selection, contrast material enhancement, image acquisition and reconstruction parameters, image display and analysis techniques, and the radiology report, which includes the presentation of data to the referring surgeon. An explanation of the surgical and radiologic anatomy of the DIEA and the characteristics that define favorable perforators is also included. These recommendations are based on the authors’ experience in performing and interpreting the results of 65 abdominal wall CT angiographic examinations and on close collaboration between the departments of radiology and plastic surgery at our institution.

**How I Do It: Abdominal Wall CT Angiography**

We have detailed the use of radiologic classification of the segmental anatomy of the anterior musculocutaneous perforating branches of the DIEA and the surgical relevance of this classification for free adipocutaneous flap harvest.

We have developed a CT angiography acquisition technique optimized for imaging the DIEA and the anterior musculocutaneous branches (perforators) supplying the abdominal wall.

We have described CT angiography postprocessing techniques optimized for display of the surgically relevant findings.

We have demonstrated a volume-rendering color look-up table optimized for imaging of anterior musculocutaneous branches of the DIEA in the subcutaneous fat of the abdominal wall.

We have demonstrated a real-time volume-rendered image manipulation reading technique that enables preoperative mapping of DIEA perforators.

Autologous breast reconstruction with use of adipocutaneous free flaps (DIEA perforator flap) is the optimal standard of care after mastectomy.

Preoperatively mapping DIEA perforators with this abdominal wall CT angiography technique may improve patient care by providing the surgeon with additional information that leads to optimization of the surgical technique, shorter operative time, and a reduction in the frequency of operative complications.
course. Usually, the DIEA enters the rectus sheath superficial to the arcuate line and courses superiorly between the posterior layer of the rectus sheath and the rectus muscle. It is not uncommon for one or both of the DIEAs to penetrate and course within the rectus muscle for some part of their length (15, 24, 25).

**Segmental Arterial Anatomy of DIEA Perforators**

The descriptions and nomenclature applied to the variations in perforator anatomy in cadaveric studies and surgical observations are diverse, but the key findings are similar (24–26). The course a perforator takes from its origin at the DIEA through four anatomic spaces to its end supply of the subcutaneous fat and skin of the anterior abdominal wall is shown in Figure 2. We refer to the portions of each perforator defined by the anatomic spaces as segments (Figs 2, 3). Perforators originate from the DIEA, which is usually located between the posterior layer of the rectus sheath and the posterior border of the rectus muscle. The perforator penetrates the posterior surface of the rectus abdominus and has a variable intramuscular segment. In cases where the artery penetrates a musculotendinous intersection, the intramuscular segment may be absent. Often, this segment penetrates the anterior surface of the rectus sheath and the anterior layer of the fascial sheath simultaneously; however, it can alternatively have a varying subfascial segment between the anterior border of the rectus muscle and the anterior layer of the rectus sheath. The course and branching of the subcutaneous segment within the subcutaneous fat is variable and involves varying anastomoses with the superficial inferior epigastric artery. Perforators originating from type II DIEAs are often arranged in two rows along the course of each trunk. Some authors refer to these as medial and lateral row perforators. In addition, some authors refer to perforators that penetrate the anterior rectus sheath near the umbilicus and supply the adjacent subcutaneous fat as...
Figures 3, 4

**Figure 3:** Axial 50-mm section thickness maximum intensity projection (MIP) image obtained with abdominal wall CT angiography shows the labeled segments of a perforator originating from the right DIEA.

**Figure 4:** Axial 50-mm section thickness MIP image shows a perforator with a long intramuscular segment coursing medially toward the umbilicus. The subfascial and subcutaneous segments course away from the umbilicus. Some authors refer to these as paraumbilical perforators or paramedian perforators.

### Table 1

<table>
<thead>
<tr>
<th>Abdominal Wall Artery</th>
<th>Relevant Characteristic</th>
<th>Importance to DIEA Perforator Surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIEA</td>
<td>Caliber</td>
<td>A large-caliber trunk is a more favorable pedicle.</td>
</tr>
<tr>
<td>DIEA</td>
<td>Branching pattern (type I, II, or III)</td>
<td>The DIEA branch forms the pedicle for the anastomosis. Type I and type II arteries have perforators with shorter intramuscular segments. Type II arteries often have perforators arranged in rows along each trunk; two or more of these perforators may be dissected to a single trunk. Type II and type III arteries have a lateral branch that is in the vicinity of the motor nerves to the rectus abdominus; dissection of this branch raises the risk of muscle denervation.</td>
</tr>
<tr>
<td>DIEA perforator</td>
<td>Any intramuscular course</td>
<td>Any intramuscular course makes dissection of the DIEA more difficult.</td>
</tr>
<tr>
<td>Intramuscular perforator</td>
<td>Direction and length</td>
<td>Oblique intramuscular segments require more dissection of the rectus abdominus. Perforators that penetrate a musculotendinous intersection may not have an intramuscular segment and are preferred by some surgeons.</td>
</tr>
<tr>
<td>Subfascial perforator</td>
<td>Length and direction</td>
<td>Radiologically, the subfascial segment origin can be confused with the subcutaneous segment origin. Long subfascial segments require careful dissection to preserve the perforator when incising the rectus sheath.</td>
</tr>
<tr>
<td>Subcutaneous perforator</td>
<td>Location and caliber</td>
<td>Large-caliber (≥1 mm in diameter) arteries supply a greater volume of adipocutaneous tissue and represent better vascular pedicles. Preoperative knowledge of the subcutaneous segment origin facilitates accurate planning of dissection.</td>
</tr>
<tr>
<td>Superficial inferior epigastric artery</td>
<td>Caliber and location</td>
<td>Use of a large-caliber superficial inferior epigastric artery as a vascular pedicle for a free flap is favored by some surgeons.</td>
</tr>
</tbody>
</table>
paraumbilical or paramedian perforators, an example of which is shown in Figure 4.

**Important Anatomic Features for DIEA Perforator Flap Surgery**

Table 1 details the relevant characteristics of the DIEA, the segments of the perforators, and the superficial inferior epigastric artery. Both type I and type II branching patterns have been shown to have perforators that have a shorter intramuscular course than do perforators in patients with type III branching patterns (20). Individual perforators can be traced to individual branches, and the branch forms the pedicle for the anastomosis. A type II or type III branching pattern has a lateral branch that is in the vicinity of the motor nerves to the rectus abdominus. Leaving this lateral branch in situ by removing a medial branch only leaves those nerves undisturbed. Denervation of the rectus abdominus defeats the purpose of a muscle-sparing adipocutaneous flap and is highly undesirable. Preoperative knowledge of the DIEA branching pattern may therefore aid the surgeon’s choice of which perforator to use and the hemiabdomen of choice.

Perforator anatomy is used to determine the surgeon’s choice of perforator(s) on which to base a DIEA perforator flap, and it influences surgical planning and technique (20,21,26). A large-caliber (≥1 mm in diameter) perforator with a large subcutaneous segment will supply a larger volume of adipocutaneous tissue. Perforators with a subcutaneous segment origin that is at a musculotendinous intersection are preferred by some surgeons and anecdotally have shorter (or absent) intramuscular and subfascial segments. Knowledge of the subfascial segment (if any) is desirable, as these segments require careful dissection.

---

### Table 2

<table>
<thead>
<tr>
<th>Acquisition Parameters</th>
<th>Somatom Sensation 64</th>
<th>Somatom Sensation 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collimation (mm)</td>
<td>64 × 0.6</td>
<td>16 × 0.75</td>
</tr>
<tr>
<td>Helical beam pitch</td>
<td>0.9</td>
<td>1.13</td>
</tr>
<tr>
<td>Tube voltage (kV)</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Tube current (mAs)</td>
<td>180–200</td>
<td>180–200</td>
</tr>
<tr>
<td>Rotation time (sec)</td>
<td>0.37</td>
<td>0.5</td>
</tr>
<tr>
<td>Reconstruction section thickness (mm)</td>
<td>0.75</td>
<td>1</td>
</tr>
<tr>
<td>Reconstruction section spacing (mm)</td>
<td>0.4</td>
<td>0.7</td>
</tr>
</tbody>
</table>

### Table 3

<table>
<thead>
<tr>
<th>Reconstruction Method</th>
<th>Image Display Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reconstruction generated automatically at CT scanner workstation</td>
<td>Thin overlapping 0.75/0.4 mm axial images, thick contiguous 20/20 mm MIP images, or thick overlapping 50/20 mm MIP images*</td>
</tr>
<tr>
<td>Reconstruction generated at CT scanner workstation by imaging technologist</td>
<td>Coronal MIP image with voxels cut away to demonstrate the DIEA branching pattern</td>
</tr>
<tr>
<td>Reconstruction manipulated in real time at reporting workstation by reading radiologist</td>
<td>VRT images or multiplanar reformation images</td>
</tr>
<tr>
<td>Reconstructions created at reporting workstation by the radiologist for presentation to the surgeon</td>
<td>VRT reconstructed abdominal wall images with perforators marked or coronal MIP images with perforators marked</td>
</tr>
</tbody>
</table>

Note: —VRT = volume-rendered technique.

* To ensure the entire course of each perforator is captured on one image, both thick contiguous MIPs and thick overlapping MIPs are created. The thick overlapping MIPs are used only when the entire course of a perforator is not evident on the thick contiguous MIPs, as these images contain many overlapping vessels.

---

**Figure 5:** Coronal MIP image with voxels cut away from the three-dimensional dataset to optimize display of the branching pattern of the DIEAs from their origins at the external iliac arteries (EIA). The right DIEA has a type II pattern, and the left DIEA has a type I pattern. The umbilicus is visible. The deep circumflex iliac artery (DCIA) can also be seen branching from the external iliac arteries.
long intramuscular segment with a substantial lateral or medial component to its course requires more dissection of the rectus muscle. Extensive rectus muscle dissection is not desired and theoretically increases abdominal wall morbidity. A more medial perforator means that dissection through the rectus muscle is less likely to denervate the muscle that receives its nerve supply laterally. Denervation of the rectus muscle negates the abdominal wall morbidity benefits of the DIEA perforator flap technique and is highly undesirable. A row of perforators in a sagittal plane originating from the same DIEA trunk is favorable for surgeons who prefer to base DIEA perforator flaps on more than one perforator, as the rectus muscle can be split in a sagittal plane to dissect these vessels to their origin.

**Patient Selection**
Planned autologous breast reconstruction with use of an abdominal wall donor flap is an indication for abdominal wall CT angiography. The technique may also be performed for other planned abdominal wall flap–based reconstructions, such as those that use the superficial inferior epigastric artery, deep circumflex iliac artery, or superficial circumflex iliac artery. The only absolute contraindication is a previous anaphylactic reaction to intravenous iodinated contrast material. Severe renal impairment may also preclude the use of intravenous iodinated contrast material.

**Image Acquisition**

**Patient Positioning and Preparation**
Ideally, patients undergo imaging in the supine position, as this mimics the intraoperative position. It is important for patients to not wear clothing that deforms the contour of the abdominal wall. This includes the patient’s own clothing, as well as any strings attached to hospital gowns. The Velcro straps (which may compress the abdominal wall and force the patient’s clothing to lie close to her skin) ensure stable patient position and prevent the patient from falling from the CT scanner table. These straps are placed outside the scanning range to optimize subsequent image reconstruction.

**Acquisition Volume and Range**
The superior extent of the tissue volume to be characterized is the superior limit of the planned (donor site) surgical field. This is a point 3–4 cm above the umbilicus. The inferior extent is the origin of the superficial inferior epigastric artery from the common femoral artery.

**Contrast Material Enhancement and Scanning Direction**
The DIEA and superficial inferior epigastric artery fill from the external iliac and common femoral arteries, respectively, in a caudocranial direction. Thus, contrast material enhancement of the inferior epigastric vessels is optimized by timing the CT acquisition with use of bolus tracking at the common femoral artery rather than at the aorta and scanning in a caudocranial direction. A total of 100 mL of an intravenous, low-osmolar, nonionic iodinated high-concentration (350–370 mg/mL) contrast agent is administered with a dual-chamber injection pump at a rate of 4 mL/sec and immediately followed by a 50-mL saline bolus flush administered at a rate of 4 mL/sec. For the suggested injection rate, the choice of high-concentration (>350 mg/mL) monomeric iodinated contrast material may aid in the identification of tiny perforator branches, particularly intramuscular segments. The evidence for this possibility comes from literature in which researchers evaluated visualization of small vessels supplying the brain, heart, pancreas, liver, and lungs (27–31). Alternately,
use of a monomeric iodinated contrast agent with a concentration of 300 mg/mL and an injection rate of 5 mL/sec should produce equivalent vascular attenuation results. The trigger for acquisition is attenuation of the common femoral artery to a level of more than 100 HU at the axial level of the pubic symphysis. This level also provides a bone landmark for the inferior limit of the scan volume in the z-axis. Acquisition begins with the minimum delay achievable, typically 4 seconds, on modern multidetector CT scanners.

**Acquisition Parameters**

Contiguous isometric acquisition data obtained with thin-collimation helical CT are ideal for quality CT angiography. On the multidetector CT scanners (Somatom Sensation 16 and Somatom Sensation 64; Siemens Medical Solutions, Erlangen, Germany) used to perform abdominal wall CT angiographic examinations, we used settings that balanced low radiation dose with good image quality; this is known as the ALARA (as low as reasonably achievable) principle (Table 2). Diagnostic-quality images were obtained with both scanners. Use of
120-kV tube voltage and 180–200-mAs tube current results in high-quality images and acceptable effective dose estimates for the limited scanning range of abdominal wall CT angiography. With this technique, the effective dose is 6 mSv for an average-sized patient with a scanning range of 30 cm (ImPACT CT Patient Dosimetry Calculator, version 0.99w; St George’s Hospital, London, England). Automatic exposure control was notable for its absence from our scanning protocol.

Modern multidetector CT scanners have software that can be used to modulate tube current in two axes. Modulation in the z-axis based on the varying shape of the patient and angular modulation is adjusted in real time with a single gantry rotation delay (32). When we compared abdominal wall CT angiography performed with dose modulation enabled with abdominal wall CT angiography performed with dose modulation disabled, we found that disabling dose modulation resulted in a similar dose estimate and, subjectively, less image noise in the abdominal wall (therefore enabling better visualization of the tiny perforator branches, particularly the intramuscular segments). The dose estimate was determined by evaluating effective dose in an average-sized patient who underwent imaging with dose modulation enabled and subsequently calculating the effective dose had dose modulation been disabled. Both techniques resulted in a dose of 6 mSv. The similar dose estimate is not surprising, as the scanning range almost entirely covered the bony pelvis, where dose modulation techniques had little effect in reducing dose. Image quality was judged subjectively by comparing side-by-side studies of patients with similar body habitus and scanning protocols but with dose modulation enabled or disabled. It is assumed that the perceived improvement in image quality could have been caused by the angular modulation algorithms, which were designed to optimize signal-to-noise ratio in the intraabdominal region of the images rather than in the abdominal wall (32).

### Image Reconstruction

In our clinical practice of abdominal wall CT angiography, all image reconstruction is performed at a Leonardo (Siemens Medical Solutions) workstation equipped with imaging software (Syngo 3D VRT and Syngo InSpace 4D, version 2006A; Siemens Medical Solutions). The images in this article (except when stated otherwise) were created at this same workstation with the same imaging software. None of the tools used in this study—including the grid overlay tool—is vendor specific, and all are available on all CT workstations endorsed by major vendors. Table 3 lists the image reconstruction and display methods used. Thin overlapping axial images and thick MIP axial images are preprogrammed into the CT scanning protocol for automatic reconstruction at the scanner console. The thin overlapping axial images are used as image data for multplanar reformations, as well as to generate the MIP and VRT images created by the technologist and radiologist. Experienced technologists spend an average of 10 minutes per patient on image reconstruction. The reporting radiologist (D.L.S.) spends an average of 7 minutes per patient on image reconstruction. Given the usual course of DIEAs, the image data effectively provide images in the transaxial plane in most patients and are therefore used to measure the caliber of the DIEAs, as various in vivo and in vitro studies have shown the use of MIPs and multplanar reformations alone is prone to inaccuracy in vascular imaging (33–36).

We prefer to use thick axial MIP images to demonstrate the intramuscular and subcutaneous segments of the perforators. Figure 3 is a 50-mm axial MIP image obtained with abdominal
wall CT angiography that shows the intramuscular, subfascial, and subcutaneous segments of a perforator and its origin from the right DIEA.

Certain subtypes of perforators described by some authors are well demonstrated on thick axial MIP images. Figure 4 shows a perforator with a long intramuscular segment coursing medially toward the umbilicus. The subfascial and subcutaneous segments course away from the umbilicus. Various authors refer to these as paraumbilical or paramedian perforators (24,26). When present, this perforator is often a continuation or branch of the umbilical branch of the DIEA. As discussed previously, a long intramuscular segment is an unfavorable characteristic.

Coronal MIP images are obtained to determine the branching pattern of DIEAs. Figure 5 is an MIP image that shows a type II DIEA branching pattern on the left side of the image and a type I pattern on the right side of the image. These images were created by the medical imaging technologist at a CT workstation. The cut-away feature of the workstation can be used to remove parts of the volume anterior (skin) and posterior (omental and/or mesenteric arteries and enhancing bowel wall) to the region of interest to better depict the DIEA course.

VRT is an image display technique that is used to assign color and opacity values to voxels and display a two-dimensional representation of the three-dimensional dataset. Additional features and graphics-processing methods vary between software vendors. Common to all VRT software is the color look-up table (CLUT), which is used to assign voxel color and opacity on the basis of CT numbers. We have developed a CLUT that optimally displays the subfascial segments of the perforators, the location at which perforators pass through the anterior rectus sheath, and the branching and caliber of the subcutaneous segments. This CLUT is designed to make the subcutaneous fat completely transparent and maximize the surface contours of the anterior rectus sheath and the subfascial and subcutaneous segments of the perforators. The skin has a range of attenuations that overlaps with that of the rectus sheath and the perforators. The CLUT is designed to color the skin pink, which allows these structures to be distinguished from each other, and adds realistic surface rendering of the abdominal wall skin for the images presented to the surgeons. We have developed working CLUTs for both Syngo InSpace 4D software and OsiriX open-source software (http://www.osirix-viewer.com/) distributed under the GNU general public license.

VRT images obtained with our CLUT are optimized for visualization of the subcutaneous and subfascial segments of the perforators. The shiny green surface of the anterior rectus sheath demonstrates the contour of the subfascial segments, and the red-green surface shading of the subcutaneous segments is highlighted against the transparent fat (Fig 6). The musculotendinous insertions appear red against the green surface of the remainder of the anterior rectus sheath. This is the only image format in which the musculotendinous insertions are delineated as being separate from the muscular rectus. Figure 7 is a close-up image acquired with VRT that highlights the subfascial and subcutaneous segments of a perforator. Figure 8 demonstrates the ability of the OsiriX software to perform this function with a similarly customized VRT CLUT.

Real-time manipulation of the VRT display involves use of volume cropping and clip planes by the radiologist to facilitate mapping of the locations of the points at which the perforators penetrate the anterior rectus sheath and any subfascial segments. The radiologist uses this method to ultimately construct a scaled map that the surgeon uses intraoperatively.

With use of a VRT image viewed from an anterior anatomic coronal perspective (effectively viewing the
Abdominal wall from in front), an anterior coronal clip plane, volume cropping, or both are used to cut away the skin and varying amounts of subcutaneous fat to survey the anterior rectus sheath and locate the point at which the perforators penetrate the anterior rectus sheath. Identification of the critical anatomy is also aided by rotating the VRT image into the perspective most suitable (usually much closer to a view perpendicular to the surface of the abdominal wall) to verify that a suspected perforator is a real finding (Fig 9).

The steps the radiologist takes to create the final images for presentation to the surgeon are outlined sequentially in Figures 10–13. The radiologist uses arrows to mark perforators (Fig 10), with color coding used to denote large (>1.0 mm diameter) and small (<1.0 mm diameter) perforators. It is ensured that the VRT image is restored to the original scanning orientation when the arrowheads are placed to avoid misregistration artifacts that may result from the multiple VRT rotations that occur during the mapping process. These arrowheads are located outside the VRT volume, so they do not inadvertently move during image manipulation. A scaled grid is applied to the image with the 0,0 point of the axis at the umbilicus (Fig 11). The clip plane is removed, leaving a surface-rendered view of the anterior abdominal wall, with the arrowheads still marking the location of the perforators (Fig 12). This is one of the images the surgeon uses intraoperatively. The same grid and arrowheads are overlaid onto the coronal MIP image previously described (Fig 13). This single image facilitates a spatial appreciation of the relationship between the perforators and their parent DIEA trunks, allowing the surgeon to easily identify large perforators that have long oblique intramuscular or subfascial segments. Two movies demonstrating this process in real time are available online as AVI files (Movies 1, 2; http://radiology.rsna.org/cgi/content/full/249/1/32/DC1).

Radiology Report

The key information obtained with abdominal wall CT angiography is documented in the radiology report and distributed to the referring surgeon. The important findings are listed in Table 4. Reconstructed standard axial abdominal images, which are essentially late arterial phase images obtained through the lower abdomen, are also reviewed to exclude gross intraabdominal abnormalities detected within this scanning range. The surgeons at our institution review all images presented to them on the picture archiving and communication system, and they use these images to plan the surgical procedure. Intraoperatively, they use the picture archiving and communication system to view the VRT perforator map to mark the perforators on the patient’s abdominal wall with the aid of a ruler and permanent marker pen.

Discussion

Abdominal wall CT angiography is a newly developed technique used for preoperative imaging that may improve the standard of care for autologous breast reconstruction with a free DIEA perforator flap. To our knowledge, Masia et al (17) are the only authors to have related the use of abdominal wall CT angiography to the surgical outcome. In two cohorts of 30 patients in whom the same surgeons performed surgical breast reconstruction with DIEA perforator flaps and (a) with preoperative abdominal wall CT angiography in one cohort and (b) without preoperative abdominal wall CT angiography in the other cohort, Masia et al (17) reported that the patients who underwent preoperative CT angiography had an average per-patient reduction in surgical time of 100 minutes, one less total flap failure, and one less partial flap necrosis when compared with the patients who did not undergo preoperative CT angiography. They failed to report whether these findings were significant. The anecdotal
experience of our surgeons supports these findings.

In this article, we have described a novel approach to abdominal wall CT angiography that differs substantially from typical abdominal CT angiographic techniques, in that the common femoral artery is used as the site for the bolus trigger, scanning is performed in a caudocranial direction, the automatic exposure control feature is disabled, and a scaled grid overlay tool is used to optimally present information to the surgeons. In our experience with 65 patients, we have had no technical failures, and we have obtained diagnostic-quality images in all patients. We have not observed venous contamination with this technique. Venous contamination potentially would result in a prominent vein being mistaken for a large arterial perforator.

We have not encountered any complications. Use of a common femoral artery bolus trigger site theoretically minimizes the risk of substantial stenotic atherosclerotic aortic disease affecting bolus arrival if an upper abdominal aortic bolus trigger site has been used instead. This bolus trigger site may not prevent substantial stenotic atherosclerotic disease from affecting unilateral common iliac or external iliac arteries, as this might theoretically result in differing arrival times of contrast material within the common femoral arteries. We have not encountered substantial atherosclerotic disease in small or large arteries in any patient. This likely reflects the fact that most patients who undergo breast reconstruction are relatively young and healthy. The oldest patient we examined was 64 years old. This technique has proved accurate in the assessment of three patients who underwent previous extensive abdominal wall surgery and consequently had gross distortion of the normal vascular anatomy, including absence of one or both of the DIEAs. Surgical findings enabled us to confirm the abdominal CT angiography findings and allowed confident planning of abdominal wall flap surgery, with an excellent surgical outcome in these three patients.

We created from scratch a VRT

Table 4

Information Obtained with Abdominal Wall CT Angiography and the Image Display, Reconstruction, and Reformation Technique That Best Demonstrates These Findings

<table>
<thead>
<tr>
<th>Information Obtained with Abdominal Wall CT Angiography</th>
<th>Images That Best Demonstrate These Features*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branching pattern of the DIEAs (type I, II, or III)</td>
<td>Coronal MIP image</td>
</tr>
<tr>
<td>Number and location of large perforators</td>
<td>Manipulated VRT image display, grid maps created from manipulated VRT image display</td>
</tr>
<tr>
<td>Caliber of large (&gt;1.0-mm diameter) perforators</td>
<td>Multiplanar reformations, thick axial MIPs</td>
</tr>
<tr>
<td>Intramuscular segments of large perforators</td>
<td>Thick axial MIPs</td>
</tr>
<tr>
<td>Subfascial segments of large perforators</td>
<td>Thick axial MIPs, manipulated VRT image display</td>
</tr>
<tr>
<td>Subcutaneous segments of perforators</td>
<td>Thick axial MIPs, manipulated VRT image display</td>
</tr>
<tr>
<td>Anterior rectus sheath and musculotendinous insertions</td>
<td>Manipulated VRT image display</td>
</tr>
<tr>
<td>Caliber and course of the superficial inferior epigastric artery</td>
<td>Multiplanar reformations, thick axial MIPs, manipulated VRT image display</td>
</tr>
</tbody>
</table>

* Data are taken from our anecdotal experience.
CLUT that was specifically tailored to abdominal wall CT angiography on the basis of the attenuation of (a) contrast material in the DIEA and its branches, (b) muscle of the rectus sheath, and (c) subcutaneous fat. Contrasting colors (red and green) were chosen. This CLUT enables one to quickly identify the location where the perforators penetrate the anterior rectus sheath when clip planes are used (average reporting time, 7 minutes). Clip planes are necessary, as the skin is not transparent with this VRT CLUT. We have no data to show that the VRT CLUT is more or less accurate than vendor-provided CLUTs; however, we noted that reporting times were at least halved in several cases in which the experience with this newly created CLUT was comparable with that with several vendor-provided CLUTs that were compared side by side in the same patient data sets. We have not used other VRT CLUTs since. While use of this VRT technique is straightforward, we have become aware of several potential pitfalls. Heavy abdominal wall scarring can be both distracting and misleading. In these situations, frequent referral to the axial MIP images is required. This is also required to discern vessels that run within scars. Another potential pitfall is differentiating a perforator with a subfascial segment from one that perforates the anterior rectus sheath and subsequently courses superficially along it. This is important to differentiate, as it could lead to incorrect localization of rectus sheath perforation. Again, this is overcome by referring to axial MIPs, image data, or both.

The most serious drawback of abdominal wall CT angiography is the use of ionizing radiation, particularly in a population that is already at risk. Doppler US and color duplex US have been used with some success in planning perforator flap surgery (37–39). However, this is a technically challenging and time-consuming process that requires experienced sonographers with a good understanding of DIEA perforator flap surgery (17). This was the experience at our institution, and our surgeons abandoned preoperative US in favor of abdominal wall CT angiography early in our experience, despite misgivings about the use of ionizing radiation. Giunta et al (39) reported a high rate of false-positive findings with use of Doppler US (17). To our knowledge, there have been no large head-to-head comparisons of US and abdominal wall CT angiography for preoperative perforator flap planning. In a recent report of eight patients who underwent DIEA perforator surgery, researchers compared preoperative Doppler US with abdominal wall CT angiography and found that US could not be used to detect perforators or to identify DIEA anatomic variations, whereas CT angiography could be used to identify 22 perforators with 100% specificity (23).

High-spatial-resolution magnetic resonance (MR) angiography has the potential to provide results similar to those provided by abdominal wall CT angiography; however, MR angiography has the advantage of not exposing patients to ionizing radiation. Kelly et al (40) report high sensitivity for use of MR angiography in planning free fibula flap reconstructive surgery. To our knowledge, there have been no reports of abdominal wall MR angiography. Our own preliminary experience with abdominal wall MR angiography (three patients were examined with a 1.5-T system and three were examined with a 3-T system) has been mixed. Reproducibility has been poor, and the depiction of smaller perforators has been disappointing.

In this article, we have defined the segmental anatomy of the anterior musculocutaneous perforating branches of the DIEA and discussed the importance of these features in pre- and intraoperative surgical planning and technique. The acquisition protocol and postprocessing, image reconstruction, and reading techniques we have formulated are optimized to obtain comprehensive anatomic information while minimizing radiation dose to the patient. Its anatomic accuracy has been reported in several preliminary cadaveric and surgical studies (17–23). To our knowledge, no large prospective study has been performed. The detailed description provided will allow other radiologists and surgeons interested in free DIEA perforator flap surgery to incorporate this useful tool into their practice.

Acknowledgments: We thank Francesco Gaillard, MBBS, PG Dip Surg Anat, Royal Melbourne Hospital, for the three-dimensional illustration of perforator anatomy; Francesca Langenberg, DCR, The Royal Melbourne Hospital, for assistance with acquisition and postprocessing CT protocols; and Paul Einsiedel BSc (Hons), The Royal Melbourne Hospital, for performing CT dosimetry.

References


